Руль вертолета


Управление вертолетом. | АВИАЦИЯ, ПОНЯТНАЯ ВСЕМ.

Здравствуйте!

Взлет МИ-8 в зоне воздушной подушки.

Мы с Вами уже выяснили как, в принципе, управляется вертолет, и как работает автомат перекоса. А сегодня внесем некоторую ясность в вопрос о том, какую роль во всем этом играет пилот. Какие даны ему органы управления для решения вобщем-то непростой задачи, каковой является управление вертолетом

С самолетом все более-менее понятно. У него есть две самостоятельные системы: система управления самолетом (собственно управление рулями и элеронами) и система управления двигателем. И органы в кабине экипажа в количестве трех штук 🙂 : ручка управления самолетом (РУС), ручка управления двигателем (РУД), и педали для управления рулем направления. Как в этом плане обстоят дела у вертолета?…

Начнем с того, что определим более конкретно типы управления вертолетом.

Первое — это вертикальное управление. Осуществляется путем одновременного изменения угла установки лопастей несущего винта (то есть изменением общего шага). Делает это автомат перекоса.

Второе — путевое управление.То есть изменение направления полета. Осуществляется при помощи рулевого (хвостового) винта путем изменения его тяги (то есть изменение общего шага рулевого винта). Если вертолет двухвинтовой схемы (без хвостового винта), то путем изменения крутящего момента одного из винтов. Об этом я уже говорил ранее.

Третий тип — поперечное управление. Это управление вертолетом по крену. Крен создается наклоном плоскости вращения винта (а значит и полной аэродинамической силы винта) в нужную сторону, вправо или влево. При этом появляется боковая составляющая полной аэродинамической силы, обеспечивающая возможность бокового движения вертолета. Кроме того сила тяги винта теперь уже не проходит через центр тяжести вертолета. Поэтому относительно него появляется момент, кренящий вертолет в нужную сторону. Все это тоже прерогатива автомата перекоса.

Ну и четвертый тип управления вертолетом — продольное управление. Это управление вертолетом по тангажу, при этом вертолет летит вперед или назад с соответствующей скоростью. Осуществляется путем наклона плоскости вращения несущего винта и, соответственно, вектора полной аэродинамической силы в продольном направлении, вперед или назад. При этом создается угол тангажа (вертолет опускает или поднимает нос) из-за создания момента наклоненной аэродинамической силы относительно центра тяжести вертолета. Плюс появляется горизонтальная составляющая этой силы, которая, собственно, и движет вертолет в нужном направлении. Главную роль здесь опять же играет автомат перекоса, меняющий циклический шаг винта.

Итак у вертолета есть три главных агрегата, которые определяют его движение. Двигатель, автомат перекоса и рулевой винт. И, собственно, управление вертолетом означает управление этими тремя агрегатами. Для этого существуют три системы: система управления автоматом перекоса (управление циклическим шагом несущего винта), система управления хвостовым винтом и система управления общим шагом винта во взаимодействии с управлением оборотами (мощностью) двигателя, или система «шаг-газ».

Что такое «шаг-газ». Дело в том, что угол установки лопастей несущего винта (общий шаг) и обороты двигателя связаны. Ведь если увеличить угол, то возрастет величина аэродинамических сил, действующих на лопасти. Увеличивается и подъемная сила, и сила сопротивления. Винт, как говорят, нагружается. Двигатель, находясь на определенном уровне мощности не может «обслужить» возросшую нагрузку и может начать терять обороты. Тяга винта, соответственно, может уменьшиться.

Чтобы этого не происходило, была придумана система шаг-газ, которая одновременно с увеличением угла установки лопастей подает команду в топливную автоматику на увеличение оборотов (то есть «увеличиваешь шаг – даешь газ» и наоборот), тем самым исключая падение мощности двигателя.

Теперь о том, что у нас в кабине. У пилота есть собственно две ручки управления вертолетом.

Первая – ручка управления циклическим шагом винта (или просто ручка управления вертолетом). Она самолетного типа, расположена перед креслом пилота, и с ее помощью осуществляется продольное и поперечное управление вертолетом. От нее через специальную систему тяг и качалок воздействие передается на тарелку автомата перекоса, которая, в свою очередь, определяет циклический угол установки лопастей.

Системы управления циклическим и общим шагом винта.

Кабина вертолета. Хорошо видны спаренные ручки управления и ручки шаг-газ.

Вторая – ручка управления общим шагом винта или, как ее еще называют «ручка шаг-газ». Эта ручка обычно расположена слева от кресла пилота и перемещается вертикально вверх-вниз. С ее помощью осуществляется вертикальное управление путем одновременного воздействия на автомат перекоса и систему изменения оборотов двигателя. Обычно обороты двигателя меняются на первой трети перемещения ручки, далее уже меняется только общий шаг винта.

Отдельно от шага винта мощность двигателя может меняться только в небольших пределах для необходимой корректировки. Для этого на ручке шаг-газ существует специальный корректор ( обычно что-то типа поворотного кольца).

На схеме под номерами: 1 — ручка управления циклическим шагом; 2 — ручка шаг-газ; 3 — автомат перекоса; 4 — агрегат системы управления двигателем.

Кроме ручек управления есть еще педали. С их помощью опять же через систему управления вертолетом летчик воздействует на рулевой винт с целью изменения общего шага его лопастей, меняя тем самым, его тягу и, соответственно, разворачивающий момент вертолета.

Система управления шагом рулевого винта.

Кабина вертолета. Хорошо видны ручка управления и правая педаль.

При использовании всех описанных органов управления вертолетом, этот аппарат превращается в маневренную машину с довольно широкими возможностями.

Основные режимы полета вертолета – это взлет, висение, разгон и набор высоты, маневрирование и далее снижение и посадка. Обычные, впрочем, режимы для любого летательного аппарата, за исключением, конечно, висения. Этот режим доступен еще только самолетам с вертикальным взлетом и посадкой (СВВП), не считая, конечно, всякой экзотики :-).

Чуть-чуть подробнее о режиме взлета. Существует два способа взлета. Первый – «по вертолетному». В этом случае вертолет взлетает вертикально с кратковременным зависанием на высоте 1,5-2 метров (контрольное висение), после чего производится разгон с набором высоты. Второй – «по самолетному». При этом вертолет разгоняется на земле, набирает скорость отрыва и взлетает с последующим набором высоты и скорости.

Способ взлета выбирается в зависимости от состояния самого аппарата и от внешних условий. Определяющим в этом плане является запас мощности двигателя, что вполне понятно :-). Этот запас, в свою очередь, зависит от массы вертолета (точнее взлетной массы) и от таких параметров состояния атмосферы, влияющих на параметры работы двигателя и несущего винта, как местное давление воздуха, температура и влажность (влияющие на плотность воздуха).

Взлет по вертолетному.

Кроме того на выбор способа взлета влияет размер и состояние поверхности площадки, на которой находится вертолет, наличие каких-либо препятствий по курсу взлета и обязательно направление и сила ветра у земли.

Чем выше барометрическая высота места взлета (ниже давление), чем выше температура и влажность воздуха, а также чем ниже скорость встречного ветра, тем ниже запас мощности двигателя, и тем ниже должна быть взлетная масса вертолета.

Взлет по вертолетному – это основной вид взлета для современных аппаратов. Он, однако, тоже может иметь различную конфигурацию. Дело в том, что при работе воздушного винта вблизи земли может появиться эффект воздушной подушки. Это явление, я думаю, известно практически каждому современному человеку.

Воздух, отбрасываемый несущим винтом вниз тормозится у земли и образует как бы поддерживающую аппарат подушку. Такое может происходить обычно на совсем малом расстоянии от земной поверхности. Считается, что для вертолета это явление можно принимать во внимание, если расстояние от земли до плоскости вращения винта равно радиусу винта (или меньше). В этом случае прирост подъемной силы составляет 10-15%.

Так вот взлет по вертолетному может осуществляться с разгоном вне зоны воздушной подушки или в ее зоне, а также может осуществляться разгон по наклонной траектории.

Первый случай выбирается тогда, когда взлетная площадка имеет ограниченные размеры и окружена высокими препятствиями, а также если она имеет сильное запыление или покрыта свежевыпавшим снегом. Режим работы двигателя при таком взлете – максимальный то есть запаса по мощности нет.

Это самый напряженный режим взлета, а при отказе двигателя (одного из двигателей) безопасная посадка не гарантирована. Вертикальный подъем должен осуществляться до высоты обеспечения прохода над препятствиями с превышением не менее 5 метров.

Взлет вне зоны воздушной подушки с площадки, ограниченной препятствиями.

Разгон по наклонной траектории может быть использован на такой же площадке, но с высотой препятствий до 5 метров. Запас мощности при таком взлете должен обеспечивать одновременный разгон с набором высоты. Должна быть гарантирована безопасная посадка в случае отказа двигателя (одного из двигателей).

Взлет с разгоном в зоне воздушной подушки – самый распространенный способ взлета. Он обычно производится с аэродромов (вертодромов), имеющих открытые подходы. При этом двигатель работает обычно на номинальном режиме, то есть имеется запас мощности для необходимого, в случае чего :-), маневрирования. Вертолет после контрольного висения разгоняется вдоль земли с углом тангажа на пикирование в 10-15 º (иной раз и больше, и это очень эффектно :-)) и далее переходит в набор высоты. Этот взлет, кстати, – самое распространенное из того, что мы видим в кино.

Если по вертолетному взлететь невозможно, то вертолет может взлететь по самолетному, вырулив для этого к месту старта. Далее все как у самолета :-). Ручка шаг-газ устанавливается на взлетный режим, ручка управления дается немного от себя (для появления горизонтальной тяги), вертолет разбегается и, набрав определенную скорость (порядка 40-50 км/ч), после небольшого взятия ручки управления на себя, отрывается от земли. Далее некоторое выдерживание на высоте около 1,5 метров и подъем.

Взлет по самолетному.

Вот так вкратце о возможностях взлета. О других рабочих (а также аварийных и специальных) режимах полета поговорим в следующих статьях и по пожеланиям трудящихся :-).

А пока всем, я думаю, понятно, что на любых режимах полета управление производится совместными перемещениями ручек управления вертолетом, шаг-газ и педалями. Управление вертолетом максимально приближено к самолетному, но отличия, конечно, на лицо. Пилотов вертолетов даже наблюдению из кабины за землей учат по-другому. Ничего не поделаешь, специфика. Да и сравнивать вертолет и самолет наверное было бы неправильно. Однако, как говорится глаз радует и тот и другой :-). Оба летают удивительно красиво. Что еще нужно ? 🙂 :-)…….

В конце статьи помещаю ролик, который уже есть в моей статье о турбовальном двигателе. Для сегодняшней статьи он подходит как нельзя лучше :-). Взлет с разгоном в зоне воздушной подушки. Правда не совсем типичный, а с применением еще одного элемента под названием шик, граничащий с воздушным хулиганством. Однако ведь до чего ж эффектно выглядит! :-). Летчик… Снимаю шляпу…

В довершении еще ролик « О том как летает вертолет». Последний, к сожалению, на английском языке. Но кое-какие полезные моменты с точки зрения управления в нем можно понять и так и они неплохо показаны. К сожалению более приемлемого материала в этот раз не нашел 🙁 …

До новых встреч…

Фотографии кликабельны.

No related posts.

avia-simply.ru

Управление вертолетом видео. Управление двигателем вертолета.

 

 

Разберем управление вертолетом с одним несущим винтом и с одним рулевым винтом. Летчик управляет вертолетом и двигателем в полете, воздействуя на несущие рулевой винты.

В кабине летчика имеются ручки, рычаги и педали, связанные тросами «ли жесткими тягами с соответствующими органами управления вертолета. Кроме того, кабина летчика снабжена приборным и пилотажно-навигационным оборудованием, с помощью которого летчик контролирует работу двигателя, а также скорость, высоту и направление полета вертолета.

Как известно, для управления самолетом изменяют величины, направление и точки приложения аэродинамических сил, возникающих на крыле и на рулях, а также изменяют величину силы тяги.

Чтобы самолет мог лететь с набором высоты, летчик увеличивает тягу двигателя и отклоняет ручку управления на себя, что вызывает отклонение руля высоты вверх. При этом на руле высоты создается сила, которая изменяет направление полета, самолет поднимает нос, что вызывает увеличение угла атаки крыла. Увеличение угла атаки крыла соответствует увеличению подъемной силы крыла, при увеличении силы тяги самолет набирает высоту.

 

Управление вертолетом видео

Чтобы создать крен, летчик отклоняет ручку управления самолетом в требуемую сторону, это ведет к отклонению элеронов крыла. Один элерон отклоняется вверх, а другой — вниз, в результате чего левая и правая половины крыла создают различной величины подъемные силы и самолет накреняется.

Если нужно повернуть самолет влево или вправо, то летчик отклоняет ножные педали в требуемую сторону, что влечет за собой отклонение руля направления.

Для изменения скорости полета летчик сектором газа изменяет количество оборотов двигателя, или, что-то же самое, изменяет величину тяги винта или реактивного двигателя.

Если на самолете имеется воздушный винт изменяемого в полете шага, то для изменения шага винта в кабине имеется рычаг управления шагом винта, который обычно связывается с рычагом газа, так как шаг винта и газ двигателя должны быть между собой согласованы.

Чтобы управление вертолетом сделать похожим на управление самолетом, в кабине вертолета также имеются ручка управления, ножные педали, рычаг управления общим шагом винта и рычаг газа; однако они связаны уже не с теми органами, что на самолете, так как на вертолете нет крыла, ни элеронов, ни руля направления.

Ручка управления вертолетом связана тросами и тягами с механизмами продольного и поперечного управления автомата-перекоса на несущем винте.

Ножные педали соединены тросами или тягами с механизмом изменения установочных углов лопастей рулевого винта.

Рычаг управления общим шагом несущего винта соединен с ползуном автомата-перекоса.

Рычаг газа соединен тягами с дроссельной заслонкой карбюратора двигателя.

Управление вертолетом видео

Обычно управление общим шагом несущего винта и газом двигателя объединяют на одном рычаге, который в этом случае называется рычагом «шаг-газ». Дело в том, что изменение шага несущего винта, т. е. одинаковое изменение установочного угла всех лопастей винта, неизбежно вызывает увеличение или уменьшение мощности, потребной для вращения винта с неизменным числом оборотов. Несоответствие между мощностью, развиваемой двигателем, и мощностью, потребной для вращения винта, может привести к падению числа оборотов винта или чрезмерной раскрутке его, что влечет за собой невозможность продолжения полета. Управление шагом винта и газом объединено на одном рычаге таким образом, чтобы мощность двигателя всегда была приближенно равна мощности, потребляемой винтом. Для окончательной регулировки их на рычаге «шаг-газ» предусматривается рукоятка коррекции газа двигателя, позволяющая производить в небольших пределах изменение мощности двигателя без изменения шага винта.

За счет чего же вертолет перемещается вперед, в стороны и назад?

Если спросить об этом у конструктора, то он ответит: «За счет циклического изменения шага лопастей по азимуту».

А если задать вопрос, что же такое «циклическое изменение по азимуту», то последует разъяснение: «Это — синусоидальное изменение углов атаки лопастей в зависимости от их азимутального положения».

Это правильно? Безусловно. А понятно? Не очень. Разберемся, что это значит.

Для того чтобы из положения висения перевести вертолет в горизонтальный полет вперед, назад или в сторону, необходима сила, направленная в эту сторону. А как получить такую силу, которую по желанию можно было бы не только изменять по величине, но изменять по направлению.

Можно, конечно, поставить под фюзеляж еще один двигатель с воздушным винтом, который бы поворачивал вертолет в любом направлении.

А можно сделать значительно проще: использовать силу, уже имевшуюся на висящем вертолете, а именно — аэродинамическую силу несущего винта, которая при висении проходит вдоль оси винта.

Если изменить положение этой силы (наклонить ее) по сравнению с ее исходным вертикальным положением, то ее можно разложить на две составляющие силы: вертикальную и горизонтальную.

Горизонтальная составляющая и будет той силой, которая перемещает вертолет в желаемом направлении, а вертикальная составляющая будет по-прежнему выполнять роль подъемной силы. В зависимости от того, в какую сторону наклонить аэродинамическую силу винта, в ту сторону и может совершаться движение вертолета. Чем больший наклон будет иметь аэродинамическая сила, тем больше будет ее горизонтальная составляющая и тем большую скорость сможет развить вертолет в заданном направлении.

Итак, искомая сила найдена. Остается только найти способ наклонять эту силу в требуемом направлении и на необходимую величину.

Казалось бы, простейшим способом изменять наклон аэродинамической силы винта является наклон самой оси несущего винта, а значит, и всей плоскости его вращения в требуемую сторону. Эта кажущаяся очень простой схема управления была впервые применена на автожирах. Она называется схемой непосредственного управления. Принцип непосредственного управления показан.

Передвинув ручку управления вертолетом вперед, летчик тем самым посредством пары зубчатых колес наклоняет вперед всю втулку крепления лопастей несущего винта, а вместе с тем и изменяет положение плоскости вращения несущего винта. При этом полная аэродинамическая сила его будет иметь горизонтальную составляющую, направленную вперед, и вертолет начнет движение в этом направлении. Таким образом, движению ручки управления вертолетом вперед будет соответствовать и движение вперед самого вертолета.

Однако изменять угол наклона плоскости вращения несущего винта на вертолете нелегкое дело, так как огромная плоскость вращения несущего винта является как бы ротором гироскопа, который стремится сохранить плоскость своего вращения. Кроме того, трудность представляет собой выполнение разрезного главного вала для обеспечения наклона втулки.

Изобретенный Б. Н. Юрьевым автомат-перекос, включенный в управление несущим винтом вертолета, лопасти которого имеют горизонтальные шарниры, позволяет достигать такого же эффекта, как и при наклоне плоскости вращения винта, но другим, более легким способом.

Принципиальная схема управления винтом с помощью автомата-перекоса изображена.

На валу винта имеется ползун. Ползун соединен с валом продольными шлицами, которые передают ползуну вращение вала. Кроме того, наличие продольных шлиц дает возможность перемещать ползун вдоль вала вниз и вверх, при этом внешняя обойма 5 перемещается в муфте.

С ползуном осью А—А связано кольцо, а с кольцом осью Б—Б связана внутренняя обоина автомата-перекоса. Таким образом, и кольцо, п внутренняя обойма тоже вращаются вместе с валом несущего винта. Кольцо может наклоняться вправо и влево, а внутренняя обойма, кроме наклона вправо и влево вместе с кольцом, может быть на оси Б—Б наклонена вперед и назад. Вследствие наличия шарикоподшипниковой связи наклоны внешней обоймы 5 вместе с муфтой будут вызывать наклоны внутренней обоймы, но внешняя обойма не будет вращаться, так как вращение вала винта через шарикоподшипник передаваться на нее не будет.

Управление вертолетом видео

Внешняя обойма тарели автомата-перекоса через муфту  посредством тяг со сферическими наконечниками

п качалок связана с ручкой управления. Ползун  связан с рычагом «шаг-газ».

На внутренней обойме автомата-перекоса имеются выступы. Число выступов соответствует числу лопастей винта. В данном случае их три. Тяги соединяют внутреннюю обойму с лопастями винта. Таким образом, наклон внешней и внутренней обоймы заставит все три лопасти изменить свои установочные углы вокруг осевых шарниров.

Если летчик отклонит ручку управления вертолетом вперед, то он тем самым заставит наклониться вперед (вокруг оси Б—Б) обе обоймы автомата-перекоса, а вместе с этим изменят свои установочные углы и все лопасти несущего винта. Теперь, когда обоймы наклонены вперед, во время вращения винта каждая лопасть, проходя над ручкой летчика (угол азимута 180), будет автоматически уменьшать свои установочный угол, а проходя над хвостовой балкой (угол азимута 0° или 360°), будет увеличивать свой установочный угол. Естественно, что при уменьшении установочного угла уменьшится и подъемная сила лопасти, в результате чего лопасть опустится. Там, где установочный угол увеличится, там увеличится и подъемная сила, и лопасть совершит взмах.

Таким образом, при отклонении ручки управления вертолетом вперед каждая лопасть, проходя над ручкой управления (угол азимута 180°), опустится, а проходя над хвостовой балкой, приподнимется. Это равносильно тому, что наклонился вперед конус лопастей. Поскольку можно считать, что полная аэродинамическая сила винта совпадает с осью конуса, т. е. перпендикулярна плоскости вращения концов лопастей, то наклон конуса вперед означает также, что вперед наклонилась, и линия действия силы, развиваемой винтом. А это значит, что появилась горизонтальная составляющая силы, обеспечивающая движение вертолета вперед.

Если при нейтральном положении ручки управления вертолет висел, то теперь, при отклонении ручки вперед, вертолет начнет движение вперед.

Если до отклонения ручки вперед полная аэродинамическая сила несущего винта R проходила через центр тяжести вертолета, то теперь она проходит сзади центра тяжести, в результате чего возникает момент относительно центра тяжести, заставляющий вертолет опускать нос. Опускание — это будет продолжаться до тех пор, пока линия действия силы R снова не совпадет с центром тяжести.

Итак, благодаря наклону автомата-перекоса лопасть не сохраняет постоянного установочного угла, а значит, и не сохраняет постоянного угла атаки. При угле азимута 0° (лопасть проходит над хвостовой балкой) угол атаки наибольший; -при движении от угла азимута 0 до 180° (лопасть направлена вперед) угол атаки уменьшается, а затем начинает увеличиваться и при угле азимута 360° снова доходит до максимального значения. А это и есть циклическое изменение углов атаки лопасти в зависимости от ее азимутального положения.

Так создается на современном вертолете наклон конуса лопастей и сила, двигающая вертолет в избранном направлении.

Для полета назад ручка управления вертолетом должна быть отклонена на себя, за нейтральное положение.

Полет вбок, например вправо, требует отклонить ручку управления вертолета вправо от нейтрального положения. Вследствие этого автомат-перекос увеличивает установочный угол лопастей, ометающих левую часть диска, за счет чего на этом участке увеличивается их подъемная сила и лопасти взмахивают, и, наоборот, уменьшает установочный угол лопастей, ометающих правую часть диска, где лопасти опускаются. Весь конус лопастей оказывается таким образом наклоненным вправо. Появляется горизонтальная составляющая сила винта, направленная вправо, которая и служит причиной перемещения вертолета в этом направлении.

Если при висении аэродинамическая сила винта проходила через центр тяжести, то теперь она проходит левее центра тяжести. Появившийся момент наклоняет фюзеляж вертолета вправо до тех пор, пока линия действия силы не совпадет с центром тяжести. Поэтому полет вправо сопровождается наклоном фюзеляжа вправо.

Следует, однако, заметить, что наклон аэродинамической силы несущего винта не повторяет в точности наклона автомата-перекоса. В самом деле, пусть автомат-перекос наклонен назад, конус несущего винта также будет наклонен назад. Однако в этом случае происходит нежелательное изменение углов атаки у наступающей и отступающей лопастей, так как наклон винта назад неизбежно меняет тот угол, с которым встречают поток лопасти, проходя навстречу потоку или уходя от потока. Угол атаки наступающей лопасти увеличится, а отстающей уменьшится. Это вносит изменение в маховое движение лопастей, благодаря чему образуется угол отставания аэродинамической силы винта от того направления, в котором отклонен автомат-перекос.

Желательно, однако, чтобы аэродинамическая сила несущего винта строго подчинялась движению ручки управления вертолетом. Для этого передача от ручки управления к автомату-перекосу выполняется таким образом, чтобы автомат-перекос отклонялся несколько иначе, чем ручка, но зато наклон аэродинамической силы строго соответствовал бы наклону ручки управления вертолетом.

Если отклонение ручки управления вертолетом изменяет наклон линии действия подъемной сипы, развиваемой несущим винтом, то рычаг «шаг-газ» служит для изменения величины этой силы.

Когда рычаг «шаг-газ» отклоняется назад на себя, то ползун скользит вверх по шлицам и заставляет все три лопасти увеличить установочный угол. В результате этого происходит увеличение подъемной силы каждой лопасти, а значит, и увеличение полной аэродинамической силы всего винта. Если рычаг «шаг-газ» отклоняется вперед от себя, то сила винта уменьшается.

Когда аэродинамическая сила ввита становится больше силы веса, то висящий вертолет отвесно набирает высоту. Когда аэродинамическая сила винта становится меньше силы веса, то вертолет совершает вертикальный спуск. Когда аэродинамическая сила винта равна силе веса, то вертолет висит на одной высоте.

Показано, насколько увеличивается потребная мощность для вращения несущего винта (среднего размера) в зависимости от увеличения установочного угла при постоянных оборотах 250 о6\мин.

Схематически показано управление шагом рулевого винта.

Отклонение правой или левой педали через тросовое управление передается «а червячный механизм рулевого винта. Движение педалей заставляет вращаться червячную гайку. При этом червяк вывертывается или ввертывается. С червяком связаны тяги, идущие к рычагам лопастей. Движение червяка через рычаги передается на лопасти несущего винта, благодаря чему они поворачиваются в осевых шарнирах. При этом изменяется их общий установочный угол, а, следовательно, и тяга рулевого винта.

При висении вертолета или при прямолинейном полете тяга рулевого винта должна уравновешивать реактивный момент несущего винта.

Если вертолет необходимо повернуть вправо или влево, то движение педалей увеличивает или уменьшает шаг рулевого винта. В одном случае тяга становится больше, а в другом случае меньше той величины, которая необходима для уравновешивания реактивного момента несущего винта. Вертолет при этом разворачивается или под действием момента тяги рулевого винта, или под действием реактивного момента.

Отказ рулевого винта (например, из-за поломки хвостового вала трансмиссии) вызывает повороты вертолета под действием ничем не уравновешенного реактивного момента, например, на режиме висения вертолет делал бы несколько десятков оборотов в минуту вокруг вертикальной оси, что исключало бы возможность продолжения полета. Поэтому хвостовой вал, как и вся трансмиссия, изготовляется с большим запасом прочности.

При помощи органов управления на вертолете возможно совершать необходимые эволюции. Вертолет может летать с различными горизонтальными скоростями; он может как из горизонтального полета, так и с режима висения перейти на набор высоты или спуск, может крутиться на одном месте вокруг вертикальной оси, может быстро набирать скорость и быстро останавливаться, может совершать виражи и спирали. Вертолет остается полностью управляемым и в том случае, когда откажет двигатель. При этом самовращающийся несущий винт через трансмиссию передает вращение п на рулевой винт.

Для выполнения всех этих эволюций требуется координированное действие ручкой управления вертолетом, рычагом «шаг-газ» и ножными педалями.

Агрегаты техники

avia.pro

Как управлять вертолетом: техника | Журнал Популярная Механика

О тонкостях управления вертолетом Robinson R44 рассказывает старший тренер вертолетного клуба «Аэро-союз» Сергей Друй.

Ручка управления определяет циклический шаг несущего винта. С ее помощью пилот управляет вертолетом по крену и тангажу. Работа с ручкой управления во время висения напоминает балансирование на острие иглы. Практически каждое действие требует соответствующей коррекции другими органами управления. К примеру, чтобы увеличить скорость, пилот отдает ручку от себя, наклоняя машину вперед. При этом вертикальная составляющая в векторе тяги винта уменьшается, и приходится увеличивать общий шаг (поднимать рычаг «шаг-газ»), чтобы не потерять высоту.

1.Ручка управления. 2. Рычаг «шаг-газ». 3.Педали. 4. Управление связью. 5.Компас.

Шаг-газ. Поднимая рычаг «шаг-газ», пилот увеличивает общий шаг (угол атаки лопастей) несущего винта, тем самым увеличивая тягу. В случае резкого увеличения шага реактивный момент винта изменяется, и вертолет стремится изменить курс. Чтобы остаться на выбранной траектории, пилот синхронно работает рычагом «шаг-газ» и педалями.

Педали определяют шаг стабилизирующего («хвостового») винта. С их помощью пилот управляет курсом машины. Резкая работа педалями сказывается на реактивном моменте стабилизирующего винта и, несмотря на его незначительную массу, оказывает некоторое влияние на тангаж. «Опытные тренеры иногда показывают курсантам фокус, зафиксировав ручку управления и «шаг-газ» и управляя высотой и скоростью полета, лишь слегка помахивая хвостом, — рассказывает Сергей Друй, — так появляются слухи о «радиоуправляемых вертолетах» и прочей магии».

6.Вариометр (указатель вертикальной скорости). 7.Авиагоризонт. 8. Индикатор воздушной скорости. 9. Тахометр (слева — указатель оборотов двигателя, справа — винта). 10.Высотомер. 11. Указатель давления во впускном коллекторе (дает представление о запасе мощности двигателя при данной загрузке и погодных условиях). 12. Сигнальные лампы. 13. Температура воздуха во впускном тракте. 14.Часы. 15. Приборы двигателя (давление и температура масла, уровень топлива, напряжение бортовой сети). 16. Управление освещением. 17. Выключатель силового привода муфты (передает крутящий момент на винт после прогрева двигателя). 18. Главный выключатель. 19. Выключатель зажигания. 20. Обогрев кабины. 21. Вентиляция кабины. 22. Микшер внутренней связи. 23.Радиостанция.

Распределение внимания

Важнейший навык управления вертолетом — правильный выбор направления взгляда. Курсантов учат взлетать и садиться, глядя на землю на расстоянии 5−15 м перед собой. Это простая геометрия. Если смотреть дальше, вплоть до линии горизонта, можно не заметить значительных колебаний высоты. Спортсмены-вертолетчики смотрят прямо «под обрез кабины» и замечают миллиметровые изменения высоты. Если курсант выберет то же направление взгляда, он увидит небольшие колебания, но будет не в силах их скорректировать — не хватит навыков и мелкой моторики, которая приходит с опытом. Поэтому при обучении тренер предлагает курсанту начать со взгляда на 15 м, а затем постепенно сокращать эту дистанцию.

«Вентиль» на центральном тоннеле заведует фрикционом ручки управления. С его помощью пилот может увеличивать сопротивление на ручке вплоть до полной ее фиксации. Эта функция помогает в долгих маршрутных полетах.

Базовое направление взгляда в полете по маршруту — «капот-горизонт». Если положение горизонта относительно капота не меняется, значит, вертолет летит на заданной высоте с постоянной скоростью. «Клевок», скорее всего, будет означать увеличение скорости и потерю высоты, наклон линии горизонта — смену курса. «В хорошую погоду можно лететь с заклеенной приборной панелью, — говорит Сергей Друй, — а вот с заклеенными стеклами кабины далеко не улетишь».

Шаг или газ?

На большинстве современных вертолетах есть автоматика, которая регулирует подачу топлива в двигатель так, чтобы удерживать обороты несущего винта в узком рабочем диапазоне. Поворачивая рукоятку рычага «шаг-газ», пилот может самостоятельно управлять подачей топлива. В полете пилот может чувствовать, как рукоятка сама слегка поворачивается в руке — это работает автомат. Бывает, что новички в напряжении сжимают рукоятку, мешая автомату работать, и раздается звуковой сигнал, предупреждающий о падении оборотов.

Авторотация

Режим авторотации, при котором винт с малым углом атаки вращается, используя энергию набегающего воздушного потока, позволяет при необходимости выбрать место посадки и сесть с выключенным двигателем. Чтобы поддерживать режим, пилот смотрит на тахометр. Если обороты винта падают ниже рабочего диапазона, нужно плавно уменьшить общий шаг винта. Если обороты растут, общий шаг нужно увеличить. При этом вертолет остается полностью управляемым по курсу, крену и тангажу.

Статья опубликована в журнале «Популярная механика» (№5, Май 2011).

www.popmech.ru

Поговорим о теории

www.rcdesign.ru

Автор - Владимир Ковальчук

Предисловие

Радиоуправляемые модели вертолетов пользуются широкой популярностью во многих странах мира. Им не нужны аэродромы, их полет вызывает большое восхищение у публики. По своим летным возможностям модели вертолетов обогнали полномасштабных "собратьев". Это направление в спортивном моделизме возникло в начале 70 годах и очень быстро развивается. На современном этапе модели вертолетов создаются с использованием современных композитных материалов, достижений микроэлектроники и компьютерных технологий. Например, появление компьютерных тренажеров, существенно повлияло на методики освоения непростого управления радиоуправляемых вертолетов. Подключив свой радиопередатчик к компьютеру, можно без риска поломки модели экспериментировать с регулировками функций управления, отрабатывать навыки начального и сложного пилотажа вертолета.

Как свидетельствует практика, уровень развития моделизма определяется уровнем жизни населения. И хотя наша жизнь в странах СНГ не способствуют бурному развитию спортивного моделизма, у молодежи есть определенный интерес к этому увлечению. В настоящее время появилась возможность, при наличии средств, приобрести необходимое оборудование и материалы, радиоаппаратуру и аккумуляторы, двигатели и топливо и т.п. Но, к сожалению, за редким исключением, все выше перечисленное - импортное и дорогое. Большой объем информации по моделизму, в частности и по радиоуправляемым вертолетам, можно найти в Интернете, в зарубежных изданиях. Появились в Интернете и русскоязычные сайды по моделизму. Однако, по-прежнему мало широкодоступных информации на русском языке для моделистов по радиоуправляемым вертолетам, в которых бы в доходчивой форме были изложены теория вертолета, особенности его регулировок с использованием функций современной радиоаппаратуры, методики освоения полетов от висения до высшего пилотажа. Этот пробел, мы надеемся, может восполнить предлагаемая серия статей, которые будут полезны и начинающим и более опытным моделистам. При работе над статьями автор использовал отечественную и зарубежную литературу, свой опыт и опыт других моделистов.

Основы управления вертолетом

Теория аэродинамики вертолета довольна сложна и для ее полного овладения требуется знание большого ряда физико-математических дисциплин. Но, как показывает опыт, для успешного занятия авиамоделизмом нет необходимости досконального освоения этих дисциплин. Начинающему моделисту достаточно понимать явления и процессы, протекающие на всех этапах полета модели вертолета, чтобы успешно освоить технику пилотирования. Приведенные примеры и объяснения будут довольно общими, но достаточными для понимания особенностей поведения вертолета. Если этого вам будет не достаточно, то обратитесь к другим источникам, которые могут дать более научные и глубокие объяснения полета вертолета.

Вначале мы познакомимся с силами и моментами, действующими на вертолет, находящейся в висении, а затем, как эти силы изменяют положение вертолета в пространстве. Понятие "система сила" означает совокупность всех аэродинамических сил и сил гравитации, воздействующих на вертолет и перемещающих его вниз, вверх и в стороны. Если вертолет находится в висении, все эти силы должны компенсировать друг друга, чтобы вертолет оставался неподвижным. Если система сил не уравновешена, то результирующее усилие переместит вертолета и дает нам возможность управлять моделью. При чтении этих материалов хорошо иметь рядом модель вертолета и радиоаппаратуру и познавать теорию по реакции лопастей и рычагов на действия ручек управления. Это поможет вам понять, что происходит с моделью вертолета и как это связанно с перемещениями ручек управления на передатчике.

Режим висения

Рисунок 1 показывает вид вертолета с боку в висении и силы, воздействующие на него в этом ракурсе. Стрелка направленная прямо вниз представляет собой силу веса вертолета. Ей противодействует подъемная сила несущего винта. В устойчивом висении подъемная сила равна силе веса и вертолет не поднимается и не снижается. В полете мы не можем изменять вес вертолета. Мы можем управляем подъемной силой (силой тяги) несущего винта за счет изменения угла установки лопастей (общего шага) или числа его оборотов. Поэтому существуют две системы моделей вертолетов. Первая, так называемая, с общим (или коллективным) шагом, в которой управление тягой осуществляется изменением угла установки лопастей. Вторая - с фиксированным шагом, в которой управление тягой винта осуществляется только изменением числа оборотов несущего винта при постоянном значении установочного угла. Каждая система имеет свои достоинства и недостатки. Система с фиксированным шагом имеет упрощенную конструкцию головки несущего ротора, проще в эксплуатации и в наладке. Кроме того не требуется очень дорогая аппаратура управления. Основной недостаток этой системы заключается в большой инерционности и нелинейности вертикального управления вертолетом. В настоящее время изменять число оборотов модельных двигателей достаточно быстро невозможно. Кроме того, тяга винта пропорциональна квадрату числа оборотов двигателя. В этой ситуации очень сложно удерживать вертолет в неподвижном висении. Я не говорю, что летать такой вертолет не будет, просто его освоение потребует дополнительного времени. Система с коллективным шагом обеспечивает лучшее управление вертолетом, поскольку тяга лопастей почти пропорциональна шагу, который может изменяться почти мгновенно. Однако такая система требует согласованного управления шагом и мощностью двигателя. Это приводит к тому, что для управления таким вертолетом требуется аппаратура, в которой с помощью одной ручки можно было изменять значение шага лопастей несущего ротора и мощность двигателя. Необходимость такого согласование вызвано тем, что момент сопротивления, следовательно и мощность, требуемая для вращения лопастей пропорциональна квадрату изменения шага лопастей. В ином случае, при увеличении шага лопастей при неправильном регулировании мощности у нас будут падать обороты и тяга винта. Следовательно, вы управляете величиной подъемной силы в висении исключительно перемещением, как правило, левой ручки вперед-назад, удерживая вертолет в неподвижном вертикальном положении.

Обратите внимание на два важных момента, показанных на рисунке 1:

  • Стрелка изображающая подъемную силу лопастей показывается выходящей прямо из вала несущего винта. Действительно же, вал не создает подъемную силу, она возникает от вращения лопастей, но результирующая сила действует от них так, как если бы она была направлена из центрального вала ротора, как показано на рисунке 2. Это несущественно сейчас, но помните об этом, когда мы будем обсуждать в дальнейшем поведение лопастей ротора.
  • Подъемная сила, произведенная лопастями ротора всегда перпендикулярна диску несущего винта (плоскости вращения лопастей).

Рисунок 3 показывает вертолет в висении, как если бы, мы смотрели на него сверху. Опять, все силы действующие на вертолет в этом ракурсе должны быть скомпенсированы, чтобы вертолет был неподвижен.

На этом рисунке показан вертолет с вращением лопастей несущего винта вправо или по часовой стрелке. Если лопасти вашего вертолета вращаются в другую сторону, то этот рисунок необходимо зеркально перевернуть. Согласно третьего закона механики, при вращении винта по часовой стрелки, фюзеляж вертолета должен вращаться против часовой стрелки. Стремление фюзеляжа к вращению называют реактивным вращающим моментом и любое изменение мощности двигателя и коллективного шага приводит к соответствующему изменению этого вращающего момента.

Задача хвостового винта - скомпенсировать реактивный вращающий момент. Когда тяга хвостового винта создает момент, равный реактивному моменту от несущего винта, нос удерживаться прямо. Если тяга хвостового ротора возрастает, вертолет поворачивается вокруг вертикальной оси (вала несущего винта), заставляя нос идти вправо. Аналогичным способом, уменьшение тяги хвостового винта, заставит реактивный вращающий момент повернуть хвост вправо, а нос влево. Поэтому, в висении, при равновесии всех этих сил вертолет держит свой нос строго в одном направлении.

Обороты хвостового винта зависят от оборотов двигателя и основного винта, которые должны быть постоянными при висении. Тяга хвостового винта поэтому изменяется увеличением или уменьшением угла атаки лопастей хвостового ротора и в вашей радиоаппаратуре это выполняется перемещением, как правило, левой ручки вправо или влево. Посмотрите на хвостовой винт модели с левой стороны вертолета, он обычно вращает вправо (или по часовой стрелке) при этом виде. Теперь переместите левую управляющую ручку в вашем передатчике направо и увидите, как угол атаки лопастей увеличивается. Это заставит лопасти захватывать больше воздуха и хвост повернутся влево или по направлению к вам. По мере перемещения ручки влево, угол атаки уменьшится и реактивный момент переместит хвост вправо или прочь от вас.

Необходимо подчеркнуть другой важный момент: левая ручка передатчика изменяет угол атаки лопастей хвостового ротора и перемещает хвост вправо или влево, но направление перемещения хвоста противоположно перемещениям этой ручки. Причина этого в том, что мы пилотируем модель не по хвосту. Мы должны управлять носом модели. Снова переместите левую ручку вправо и влево и убедитесь что, когда ручка перемещается вправо, нос модели будет перемещаться вправо и наоборот.

Попытки пилотировать модель вертолета по хвосту очень грубая ошибка и вы ее должны избегать.

На рисунке 4 изображен вертолет при виде сзади, с существенно преувеличенным наклоном вправо для учебных целей. Для удержания вертолета в устойчивом висении все силы должны быть также скомпенсированы. На рисунке 4 мы снова видим силу гравитации (или силу веса вертолета), направленную вниз. Как уже упоминалось, эта сила компенсируется подъемной силой лопастей винта. Но теперь, обратите внимание на то, что вы не видели раньше: ротор немного наклонен вправо. Подъемная сила винта по прежнему будет перпендикулярна диску ротора и наклонена вправо.

Подъемная сила может быть разложена на две составляющие: на вертикальную и горизонтальную. Чтобы удержать вертолет на фиксированной высоте, вертикальная компонента подъемной силы должна равняться весу модели.

На рисунке 4 кроме подъемной силы изображен вектор тяги хвостового ротора, который заставит вертолет двигаться влево, если она не будет скомпенсирована другой силой. По этой причине диск несущего винта слегка наклоняют вправо и горизонтальная составляющая подъемной силы будет направлена вправо и компенсировать тягу хвостового винта и удерживать вертолет от "дрейфа" влево.

Таким образом, при наклоне вертолета вертикальная компонента подъемной силы компенсирует силу веса, а горизонтальная компонента подъемной силы компенсирует тягу хвостового ротора. Если все силы уравновешены, вертолет останется в неподвижном висении.

Вертикальные перемещения: подъем и снижение

Обратимся снова к рисунку 1, где подъемная сила лопастей ротора равна весу вертолета, следовательно вертолет поддерживает постоянную высоту висении. Для подъема вертолета просто увеличивают подъемную силу так, что она была больше, чем вес. Скорость подъема модели зависит от величины разности между силой тяжести и подъемной силой несущего винта, развиваемого им на максимальной мощности двигателя в первый момент времени. Если сказать более точно, то скороподъемность вертолета пропорционально отношению разности между максимальной мощностью двигателя и мощностью, необходимой для висения модели, к весу вертолета.

Очень важный момент, который необходимо учитывать при выполнении взлета модели, показан на рисунке 5. На этом рисунке изображена модель, которая собирается взлететь с наклонной поверхности земли. Угол наклона на этом рисунке преувеличен для наглядности. Раньше подчеркивалось, что подъемная сила несущего винта ротора всегда перпендикулярна диску вращения лопастей. Поскольку в этой ситуации диск вращения наклонен вместе с вертолетом, то и вектор подъемной силы тоже имеет наклон и раскладывается на вертикальную и горизонтальную составляющие. В этом случае, горизонтальная составляющая заставит вертолет переместиться влево, как только он оторвется от земли. Поэтому, если вы попытаетесь взлететь с неровной поверхности, то вертолет всегда будет дрейфовать в направление наклона поверхности земли. Поэтому лучше взлетать с горизонтальной поверхности. Если вы взлетаете с неровной поверхности, диск ротора необходимо наклонить в противоположную сторону для обеспечения вертикального отрыва вертолета от земли. В этом случае, ручка управления аппаратом перекоса должна быть отклонена перед отрывом от земли вправо и затем быстро переведена обратно в нейтраль, как только вертолет окажется в воздухе. Этим самым, мы обеспечим взлет модели без бокового перемещения.

Перемещения по горизонту

На рисунке 6 показан вертолет в горизонтальном полете и иллюстрирует следующие важные моменты:

  • Общий вектор подъемная сила лопастей несущего винта представляет собой сумму векторов тяги передней и задней лопастей несущего винта. Это важный момент, которой ранее мы не обсуждали, т.е., вектора подъемной силы лопастей несущего винта могут изменяться в зависимости от их положения относительно продольной оси модели. Таким образом, появляется возможность управлять направлением движения модели в горизонтальной плоскости.
  • Сумма векторов подъемных сил от лопастей несущего винта равна общей подъемной силе, показанной на рисунке 1.
  • Поскольку подъемная сила задней части диска вращения лопастей несущего винта больше, чем подъемная сила передней части, то хвост модели поднимается, а ее нос опускается. Вертолет начинает движение вперед.
  • Когда вертолет движется вперед ( это показано на рисунке 7), вертикальная составляющая суммарного вектора подъемной силы должна продолжать равняться весу вертолета, чтобы удерживать модель на постоянной высоте, а его горизонтальная составляющая определяет величину тяги вертолета вперед.

Включите радиоаппаратуру и передвиньте правую руку управления аппаратом перекоса на передатчике вперед. Вы увидите, что аппарат перекоса на модели наклонится вперед. Движение ручки обратно в нейтраль выравнивает аппарат перекоса, а движение ручки к себе наклоняет аппарат перекоса назад. Эти перемещения аппарата перекоса управляют углом наклона продольной оси модели или тангажем. (Движение ручки вперед опускает нос, а движение ручки в обратную сторону поднимает нос.) Для того, чтобы лучше понять, как это происходит, передвиньте ручку управления вперед, наклоняя аппарат перекоса. Пока аппарат перекоса наклонен полностью вперед, выключите приемник и передатчик. Аппарат перекоса останется в наклоненном положение. Теперь мы можем проанализировать, как лопасти основного ротора вызывают наклон и горизонтальное перемещение вертолета.

Медленно вращая рукой лопасти ротора, понаблюдайте за изменением их шага по азимуту (углу поворота лопастей вокруг вала). В этом случае, их шаг не будет постоянным, а будет изменяться циклически. Поэтому, закон изменения шага при вращении лопастей несущего винта вокруг вала называют "циклическим шагом". Изменение шага лопасти по азимуту приводит к изменению их подъемной силы в зависимости от наклона аппарата перекоса. По мере возрастания шага возрастает и подъемная сила. По этой причине одна часть диска ротора имеет большую подъемную силу, чем другая. Вращая лопасти по часовой стрелке рукой вы можете ожидать, что для опускания носа модели максимальный циклический шаг лопасть должна принимать над хвостовой балкой вертолета. Но, если вы посмотрите внимательно на изменение шага по азимуту, то заметите, что лопасти будут достигать максимального шага на 90 градусов раньше ожидаемого положения. Такое опережающее изменение шага лопастей необходимо из-за эффекта гироскопической прецессии.

Гироскопическая прецессия

Вращающейся ротор вертолета ведет себя подобно гироскопу, у которого гироскопическая прецессия вызывает расхождение вектора его перемещения от вектора силы, воздействующей на гироскоп. Это расхождение составляет примерно 90 градусов в направлении вращения от точки приложения силы (Рисунок 8).

Это означает, что из-за гироскопической прецессии, лопасть с возросшим шагом и лопасть с уменьшенным шагом достигнут своего максимально и минимально отклонения от горизонтальной плоскости (взмаха), повернувшись на 90 градусов. Поэтому, для наклона вертолета вперед, максимальный угол шага лопасти устанавливается, когда лопасть перпендикулярна продольной оси вертолета, так как максимальный ее взмах и тяга возникнет, из-за гироскопической прецессии, когда лопасть будет проходить над хвостовой балкой вертолета.

Крен или боковое перемещение

Аналогичным способом, изменяя подъемную силу разных сторон диска основного ротора, можно накренить вертолет вправо или влево, как показано на рисунке 9. Снова включите вашу радиоаппаратуру и перемещая правую ручку управления на передатчике вправо и влево, проследите за перемещением аппарата перекоса. Перемещение ручки вправо наклоняет аппарат перекоса направо и заставит вертолет переместить в это направление. Перемещение ручки влево вызовет противоположную реакцию вертолета.

Эффект земли

Когда вертолет висит на высоте приблизительно меньше диаметра диска основного ротора, мы встречаемся с "эффектом земли". В этом случае скорость воздушного потока, созданная лопастями ротора не может достичь большого значения из-за близости земли и вертолет располагается на "пузыре" воздуха высокого давления. При этом возрастает тяга несущего винта. Для более подробного анализа этого эффекта необходимо знать, что такое индуктивная скорость подсасывания диска и его индуктивное сопротивление. Если это вас сильно заинтересовало, то можете самостоятельно познакомиться с особенностями этого эффекта в специальной литературе. На полноразмерных машинах, при возникновении эффекта земли, вертолет ведет себя подобно человеку на большом шаре. Иными словами, становиться очень неустойчивым и это не преувеличение. Некоторые моделисты говорят, что этот эффект возникает и на их вертолетах. Тем не менее, нет однозначного мнения, что на всех моделях возникает этот эффект земли. Возможно некоторые модели вертолетов более подвержены этому эффекту. Степень воздействие эффекта земли зависит от ветра. Эффект максимален в тихие дни и ослабевает при увеличении скорости ветра, поскольку ветер выдувает воздух высокого давления из-под вертолета.

Подъемная сила при косом обтекании

В горизонтальном полете вертолета подъемная сила несущего винта возрастает из-за повышения скорости воздушного потока и увеличения количества воздуха, проходящего через ротор, за единицу времени. Дополнительная подъемная сила при косом обтекании возникает при любом горизонтальном перемещение и прямо пропорциональна горизонтальной скорости вертолета. Дополнительная подъемная сила легко распознается в полете улучшением летных качеств вертолета.

Поскольку подъемная сила от перемещения пропорциональна скорости воздушного потока, то она возникает не только при горизонтальном перемещении вертолета, но и при висении, когда дует ветер. Дополнительная подъемная сила, возникающая при ветре, может и помогать и мешать. Положительным является возможность уменьшить мощность двигателя при висении или горизонтальном полете. Но, если ветер порывистый, полет будет трудно управляемым, поскольку подъемная сила увеличивается при возрастании скорости ветра и уменьшается, как только ветер стихает. По этой причине необходимо выполнять висение только при устойчивом ветре со скоростью не более 3- 5 метров в секунду.

Авторотация

Этот термин характеризует безмоторный полет вертолета, то есть, когда двигатель остановлен, а основной ротор вращается по инерции и из-за действия потока воздуха на лопасти при снижении. Когда двигатель вращает основной ротор в нормальном полете, поток воздуха является нисходящим через диск ротора. Когда же двигатель останавливается в полете и вертолет входит в снижение с авторотацией, поток воздуха становится восходящим через диск ротора. Этот восходящий поток воздуха и перевод лопастей на отрицательный шаг заставляют ротор продолжать вращаться и сохраняют управляемость вертолетом при снижении и посадки.

Вертолет со способностью к авторотации имеет обгонную муфту в системе ротора, которая позволяет лопастям основного ротора продолжать свободно вращаться, даже если двигатель остановился. Совершенно не обязательно для модели вертолета иметь возможность авторотации, но если этого нет, то основной ротор довольно быстро остановиться, если двигатель заглохнет в полете и авария с большим ущербом фактически неизбежна.

Рысканья вертолета

Одна из причин, по которой мы покупаем радиоаппаратуру для вертолета (вместо радиоаппаратуры для самолета), заключается в необходимости дополнительных функций управления моделью вертолета, что значительно облегчает пилотирование. Это не говорит о том, что вы не можете использовать радиоаппаратуру от моделей самолетов для пилотирования вертолетом (по крайней мере на начальном этапе), просто с радиоаппаратурой для вертолета легче обучаться пилотированию.

Для того, чтобы лучше понять функцию компенсации рысканья хвостовой балки, посмотрите на рисунок 3, на котором вертолет показан сверху. Обратите внимание, что лопасти ротора вращаются двигателем по часовой стрелке и, поскольку, для каждого действия есть равное противодействие, нос вертолета будет поворачиваться влево (против часовой стрелки). И по этой причине вертолету нужен ротор хвоста для компенсации реактивного момента от вращения лопастей.

Теперь представим себе вертолет в позиции висении (когда все силы сбалансированы) и мы хотим подняться. Для этого увеличивают коллективный шаг лопастей ротора, чтобы увеличить подъемную силу винта. Следовательно увеличивается вращающий и реактивный моменты, а нос вертолета будет поворачиваться влево. Для того, чтобы удержать нос прямо, просто добавьте немного тягу хвостового ротора, чтобы скомпенсировать это увеличение реактивного момента.

И мы должны делать это вручную, каждый раз, при изменении вращающего момента (при подъеме или снижении вертолета) и тратить много времени и усилий для управления хвостовым ротором, чтобы удерживать нос модели прямо. По этой причине функция компенсации рысканья хвостового ротора сделает наш полет легче.

В большинстве радиоаппаратуры (по крайней мере, недорогой) предполагается, что вертолет находится в висении, когда ручка управления дросселем и коллективным шагом находиться в среднем положении, а снижение и подъем происходит, если ручка перемещается из этой точки. Две кнопки (программа для компьютерной радиоаппаратуры), одна для подъема, а другая для снижения, используются, чтобы отрегулировать величину компенсации рысканья хвостового ротора при отклонении ручки управления от средней позиции при висении. По мере того, как ручка перемещается для подъема вертолета вперед, автоматически добавляется величина шага хвостового ротора (и, аналогичным способом, шаг хвостового винта уменьшается, когда для снижения вертолета, ручка управления переводится в позицию ниже средней). Это автоматическое воздействие на шаг хвостового рота в течение подъема и снижения помогает удерживать нос вертолета прямо и существенно уменьшает нашу нагрузку при пилотировании модели. Для регулировки компенсации "вверх", поднимайте вертолет из висения и смотрите направление перемещения носа. Если нос перемещается влево в течение подъема, компенсация хвостового ротора недостаточная, поэтому увеличьте немного величину компенсации "вверх" и повторите попытку, делайте небольшие изменения, до тех пор, пока нос станет удерживаться прямо в течение подъема. Аналогичным способом, имеется в виду перемещение нос в течение снижения, регулируется компенсации "вниз".

Горизонтальные развороты

Рассмотрим явления, происходящие с вертолетом при выполнении разворотов в горизонтальном полете. При выполнении разворота вертолет накреняют.

На рисунке 10 показан вид вертолета, выполняющий горизонтальный полет с правым креном. Обратите внимание, что вектор подъемной силы несущего винта по прежнему перпендикулярен диску вращения. Вектор силы веса остается перпендикулярен поверхности земли. Поскольку вектор подъемной силы наклонен право на определенный угол, его вертикальная составляющая противодействует силе веса модели, а горизонтальная ее составляющая толкает вертолет вправо и заставляет вертолет выполнять правый разворот.

Это хорошо видно на рисунке 11. Обратите внимание, что при наклоне вертолета вправо, никаких изменений в величине подъемной силе несущего винта не произошли. Т.е., длина вектора подъемной силы остается постоянной. Раскладывая вектор общей подъемной силы несущего винта, мы видим, что вертикальная составляющая вектора на рисунке 11 теперь меньше веса. Если подъемная сила меньше веса, то вертолет снизится. Но, когда выполняете горизонтальный поворот, вы несомненно не хотите, чтобы вертолет каждый раз снижался. Поэтому, когда вы входите в поворот, необходимо увеличивать общий вектор подъемной силы, пока его вертикальная составляющая не сравняется с весом. Это снова уравновесит все силы (по крайней мере в вертикальном плане). Но как и насколько увеличить общую подъемную силу? Вводя вертолет в горизонтальный поворот, полная подъемная сила повышается поднятием носа вертолета для увеличения угла атаки диска несущего винта.

Степень увеличения подъемной силы или перемещения ручки управления тангажем зависят от характеристик вертолета и от угла крена. Если вы сильно задерем нос вертолета, то он будет подниматься и, очевидно, что недостаточный подъем носа должен вызывать снижение модели. Кроме того необходимо учитывать другой важный момент. Угол отклонения руля управления тангажем для поддержания горизонтального полета в согласованном повороте зависит от угла крена вертолета. При больших углах крена (более 60 градусов) вертикальная составляющая подъемной силы, противодействующая силе веса вертолета будет еще меньше. При крене в 90 вообще нет вертикальной составляющей и независимо от того, как не задирали нос вертолета, компенсации веса нет и вертолет, следовательно, будет терять высоту. Рисунок 12 показывает вертолет с углом крена больше 90 градусов.

В этом случае, любой угол отклонения ручки управления тангажем "на себя" будет добавлять подъемную силу к весу модели. Тем не менее, есть случаи, когда это очень необходимо, например, в момент выполнения второй половины петли или любого другого нисходящего вертикального маневра. Из этого простого объяснения, я думаю вы поймете, что крен очень важен на выполнения горизонтальных разворотов. При большом крене требуется большего отклонения ручки управления тангажем модели для поддержания горизонтального полета без потери высоты.

В заключение, при выполнении горизонтальных разворотов, необходимо учитывать направлением вращения основного ротора. Не останавливаясь на причинах, скажу, что вертолет с вращением ротора по часовой стрелке очень легко разворачивается вправо, а с винтом, вращающимся против часовой стрелки, влево, практически без вмешательства управления хвостовым винтом.

Обсудить на форуме

Глава1-6

6. УПРАВЛЕНИЕ ВЕРТОЛЕТОМ

В отличие от самолета вертолет обычно не имеет специальных рулевых подвижных поверхностей для управления в полете. Если бы они и были, то при полете на малых скоростях или на режиме висения их действие было бы малоэффективно, потому что на рулях или элеронах необходимые аэродинамические силы создаются только при наличии значительной скорости обтекающего их воздушного потока.

Управление вертолетом осуществляется при одновинтовой схеме несущим и рулевым винтами, а при двух или многовинтовой схеме — несущими винтами.

Таким образом, несущий винт выполняет работу не только несущей поверхности и тянущего винта, но. и работу самолетных рулей и элеронов, т. е. различных органов управления.

Рассмотрим управление вертолетами различных схем расположения несущих винтов.

Управление вертолетом схемы Б. Н. Юрьева

Неотъемлемой частью конструкции одновинтового вертолета схемы Б, Н. Юрьева является рулевой винт, который служит для уравновешивания реактивного момента от несущего винта.

Кроме того, рулевой винт является органом путевого управления вертолетом. Изменяя тягу рулевого винта, можно создать разворачивающий момент больше реактивного (тогда вертолет будет поворачиваться в том же направлении, в котором вращается несущий винт), или меньше реактивного (тогда вертолет будет поворачиваться в сторону, противоположную вращению несущего винта).

Конструкция рулевого винта сходна с конструкцией несущего винта, но она значительно проще. Каждая лопасть рулевого винта, так же как и несущего, имеет возможность поворачиваться относительно продольной оси.

Подвеска ее осуществляется на шарнире, аналогичном горизонтальному шарниру несущего винта, что позволяет лопасти совершать маховые движения. Шарнира, подобного вертикальному шарниру лопасти несущего винта, лопасть рулевого винта не имеет.

Рис. 22. Управление рулевым винтом:

/ — педали;

2 — цепная передача; 3 — скользящий шток управления; 4 — червячная муфта; 5—лопасти рулевого винта; 6 — „паук" управления шагом; 7—подшипник

Рулевой винт вращается с большим числом оборотов, поэтому при его вращении развиваются большие центробежные силы.

Автомата перекоса втулка рулевого винта не имеет. Управление же рулевым винтом осуществляется путем изменения общего шага его лопастей с помощью педалей ножного управления (рис. 22). Воздействуя на педали, летчик приводит во вращение шестерни-звездочки, заставляя поворачиваться червячную гайку, которая при этом перемещает вдоль оси шток управления. Один конец штока через подшипник опирается на трехлапый “паук”, а другой имеет в опоре шлицу, удерживающую шток от проворота.

Трехлапый “паук”, вращаясь вместе с лопастями рулевого винта, может посредством поводков поворачивать одновременно все лопасти вокруг их продольной оси, увеличивая или уменьшая шаг винта, в зависимости от того, в какую сторону и насколько были перемещены педали. Диапазон изменения шага лопастей рулевого винта для большинства вертолетов лежит в пределах +20°…—10°.

Вертикальный взлет вертолета, построенного по схеме Б. Н. Юрьева, осуществляется увеличением общего шага несущего винта или увеличением числа оборотов двигателя, или одновременным увеличением того и другого.

При взлете, одновременно с увеличением шага несущего винта, необходимо также увеличивать открытие дросселя, иначе число оборотов двигателя будет уменьшаться, что повлечет за собой уменьшение его мощности.

При взлете с постоянным числом оборотов двигателя при увеличении шага несущего винта вертолет будет разворачиваться в сторону действия реактивного момента, так как в данном случае, при увеличении мощности, затрачиваемой на несущий винт, тяга рулевого винта уменьшается или сохраняется постоянной.

Рис. 23.

Работа рулевого винта при поворотах вертолета

Для того чтобы совершить взлет без разворота, необходимо педалями увеличить шаг рулевого винта (рис. 23). При взлете, когда увеличиваются только обороты двигателя, без изменения шага несущего винта, разворачивания вертолета не будет.

Переход с вертикального взлета на горизонтальный полет осуществляется отдачей ручки управления от себя и некоторым увеличением открытия дросселя двигателя для того, чтобы избежать “просадки” вертолета в первый момент перехода. Далее необходимо несколько сбавить газ, так как с увеличением скорости уменьшается потребная мощность; если газ не сбавить, то вертолет начнет набирать высоту. Чем больше скорость горизонтального полета, тем больше отдается ручка управления от себя и тем больше вертолет наклоняется на нос.

С изменением скорости горизонтального полета для парирования разворота необходимо отклонять педали. При дальнейшем увеличении скорости, выше так называемой экономической V

9KOHOVI, необходимо увеличивать общий шаг и открытие дросселя, так как на больших скоростях полета растет сопротивление фюзеляжа и, следовательно, потребная мощность.

Переход с горизонтального полета на режим висения или вертикального спуска осуществляется взятием ручки управления на себя и некоторым уменьшением общего шага; однако Дли окончательного прекращения горизонтального движения вертолета необходимо несколько увеличить общий шаг. Вертикальный спуск осуществляется постепенным уменьшением общего шага винта.

Техника пилотирования различных вертолетов имеет свои особенности и подробно излагается в инструкциях по технике пилотирования каждого данного типа вертолета.

Особый интерес представляют развороты на режиме висения вертолета, которые осуществляются увеличением или уменьшением шага рулевого винта. При этом число оборотов рулевого винта строго соответствует числу оборотов несущего винта, так как несущий винт через трансмиссию синхронно связан с рулевым винтом. Изменяя шаг лопастей рулевого винта, мы соответственно увеличиваем или уменьшаем мощность, затрачиваемую на его вращение (за счет изменения момента), т. е. мы как-то перераспределяем мощность, которую отдает двигатель.

Уменьшая мощность, затрачиваемую на вращение рулевого винта, мы увеличиваем часть мощности, которая затрачивается на несущий винт, и тем самым увеличиваем скорость его вращения. Это вызывает некоторое увеличение тяги несущего винта, а затем и подъем вертолета. При увеличении мощности, затрачиваемой на вращение рулевого винта (разворот в сторону вращения несущего винта), происходит некоторое уменьшение тяги несущего винта и “просадка” вертолета. Таким образом, для сохранения постоянной высоты полета при разворотах (что важно при висении у земли), необходимо корректировать газ двигателя для поддержания постоянной величины тяги несущего винта.

Особенности управления двухвинтовыми вертолетами с поперечным и продольным расположением винтов

Принцип управления в горизонтальном или вертикальном полете для вертолетов с поперечным или продольным расположением винтов остается таким же, как и при управлении одновинтовым вертолетом. На каждом винте будут иметь место примерно одинаковые явления и их эффект будет просто суммироваться. Лишь некоторое отличие имеется в продольном управлении вертолетом продольной схемы. У этого вертолета для большей эффективности наклон автомата перекоса вперед — назад для переднего и заднего винтов иногда сопровождается дифференциальным изменением их общего шага, когда с наклоном автомата перекоса уменьшается шаг того винта, в сторону которого наклоняется автомат перекоса. Общий шаг другого винта в это время увеличивается.

Управление полетом в сторону (для вертолета с поперечным расположением винтов) осуществляется за счет дифференциального управления общим шагом. При движении ручки управления (влево или вправо) уменьшается общий шаг и, следовательно, полная аэродинамическая сила одного винта и увеличивается общий шаг и полная аэродинамическая сила другого винта. Это вызывает крем вертолета и наклон векторов полных аэродинамических сил, причем появляются их боковые составляющие, и вертолет начинает движение вбок (рис. 24).

Рис. 24.

Поперечное управление двухвинтовым вертолетом с поперечным расположением винтов

Рис. 25. Путевое управление двухвинтовым вертолетом с поперечным расположением несущих винтов

Путевое управление вертолетов с поперечным или продольным расположением несущих винтов достигается дифференциальным управлением автоматами перекоса винтов.

Если наклонить плоскость вращения левого винта вперед (рис. 25), а правого назад, то соответственно на левом винте получим горизонтальную составляющую полной аэродинамической силы, направленную вперед, а на правом винте направленную назад. Появляется пара сил, действующая вокруг центра тяжести, и вертолет разворачивается вправо.

Органы управления вертолетом в кабине летчика

Основными органами управления вертолетом в кабине летчика являются: ручка управления, педали ножного управления, рычаг управления общим шагом и корректор газа, штурвалы триммеров управления вертолетом (рис. 26).

Рис. 26. Размещение органов управления в кабине вертолета:

1 — ручка управления;

2 — рычаг общего шага "шаг-газ"; 3 — рукоятка корректора газа; 4 — педали ножного управления; 5—штурвалы триммеров управления вертолетом; 6 — рычаг муфты включения; 7—рычаг тормоза несущего винта

Ручка управления

расположена перед сиденьем летчика и связана с автоматом перекоса. Отклонения ручки от нейтрального положения будут означать: вперед — наклон вертолета на нос и движение его вперед, назад — наклон вертолета на хвост и движение его назад, влево — наклон вертолета влево и движение его влево, вправо — наклон вертолета вправо и движение его вправо.

Педали ножного управления расположены так же, как и на самолете, т. е. впереди сиденья. Воздействуя на педали, летчик управляет шагом рулевого винта, осуществляя тем самым путевое управление вертолетом.

Рычаг управления общим шагом расположен обычно влево от сиденья летчика. С помощью его летчик одновременно управляет изменением шага (установочного угла) всех лопастей несущего винта.

Движение рычага вверх соответствует увеличению шага — подъему вертолета. Движение рычага вниз соответствует уменьшению шага — снижению вертолета. Изменение положения рычага общего шага немедленно вызывает изменение числа оборотов двигателя, так как при этом происходит изменение потребной мощности.

Рис. 27. Объединенное управление общим шагом несущего винта и дросселем двигателя:

/—рычаг „шаг-газ";

2— рукоятка корректора газа; 3 — несущий винт; 4 — дроссель двигателя

На большинстве современных вертолетов устанавливается объединенное управление общим шагом несущего винта и дросселем двигателя (система “шаг-газ”), которая значительно облегчает управление вертолетом.

Сущность объединенного управления заключается в том, что с изменением общего шага одновременно (автоматически) изменяется открытие дросселя двигателя. Иными словами, соответственно с изменением мощности, потребляемой винтом, изменяется и мощность двигателя (рис. 27).

Для более тонкой регулировки мощности двигателя объединенная система “шаг-газ” имеет управление сазом в небольшом диапазоне оборотов при неизменном значении общего шага (корректор газа).

Управление триммерами. Нагрузки на ручку управления вертолетом в полете отличаются от нагрузок от рулей на самолете. Несущий винт вертолета передает на ручку управления периодически изменяющуюся нагрузку небольшой величины, которая несколько изменяется с изменением режима полета.

Для того чтобы создать закономерность изменений усилий на ручке при изменении режима полета, в систему управления автоматом перекоса введены продольные и поперечные пружины. С изменением режима полета изменяется положение ручки управления, так как изменяется балансировка вертолета (изменяются силы сопротивления и моменты от этих сил). Пружины, соединенные с ручкой управления, при изменении положения ручки изменяют и усилия на ручке, создавая закономерность изменения их по скорости полета, что весьма важно для летчика.

Для снятия нагрузки с ручки управления от пружин при изменении режима полета, предусмотрена регулировка их натяжения. Эта регулировка играет роль триммеров на самолете, в силу чего механизм ее принято на вертолете называть “триммерами”. Управление натяжением пружин производится штурвалами триммеров или кнопками — при электрическом управлении.

 

 

 

 

twistairclub.narod.ru

Автомат перекоса вертолета. Общий принцип управления.

Привет, друзья!

Втулка несущего винта с автоматом перекоса вертолета МИ-8.

Снова вернемся к нашим вертолетам :-), этим красивым и удивительным (несмотря на их кажущуюся сегодня обычность) аппаратам. Поговорим немного подробнее о принципах  их управления.

В статье «Как летает вертолет» я этого уже коснулся. Для того чтобы вертолет двигался поступательно, нужен перекос винта,  и создает его такой агрегат, как автомат перекоса вертолета. Вот о нем сегодня и поговорим.

Как известно для вертолета полная аэродинамическая сила — это сумма всех сил, действующих на каждую лопасть в отдельности. Силы эти я бы разделил на искусственные и на естественные.

О естественных. Каждая лопасть имеет определенный вес. Поэтому при вращении с достаточно большой скоростью на нее действует центробежная сила. Есть еще сила сопротивления и конечно подъемная сила лопасти. Вот эту самую подъемную силу вполне можно корректировать силами искусственными. А это как раз и делает автомат перекоса винта вертолета. От него к каждой лопасти протянута специальная тяга, с помощью которой изменяется угол установки лопасти, то есть по сути дела угол атаки и, как следствие, подъемная сила.

Лопасти несущего винта, описывая полный круг вокруг оси при его вращении, обтекаются встречным потоком воздуха по-разному. Полный круг – это 360º. Тогда примем заднее положение лопасти за 0º и далее через каждые 90º полный оборот. Так вот лопасть в интервале от 0º до 180º — это лопасть наступающая, а от 180º до 360º — отступающая. Принцип такого названия, я думаю, понятен. Наступающая лопасть движется навстречу набегающему потоку воздуха, и суммарная скорость ее движения относительно этого потока возрастает потому что сам поток, в свою очередь, движется ей навстречу. Ведь вертолет летит вперед. Соответственно растет и подъемная сила. (Для примера приведу пояснительный рисунок из «заслуженной» 🙂 книги об управлении вертолетом МИ-1.)

Изменение скоростей набегающего потока при вращении винта для вертолета МИ-1 (средние скорости полета).

У отступающей лопасти картина противоположная. От скорости набегающего потока отнимается скорость, с которой эта лопасть как бы от него «убегает» :-). В итоге имеем подъемную силу меньше. Получается серьезная разница сил на правой и левой стороне  винта и отсюда явный переворачивающий момент. При таком положении вещей вертолет при попытке движения вперед будет иметь тенденцию к переворачиванию. Такие вещи имели место при первом опыте создания винтокрылых аппаратов.

Чтобы этого не происходило, конструктора применили одну хитрость. Дело в том, что лопасти несущего винта закреплены во втулке (это такой массивный узел, насаженный на выходной вал), но не жестко. Они с ней соединены с помощью специальных шарниров (или устройств, им подобных). Шарниры бывают трех видов: горизонтальные, вертикальные и осевые.

Силы, действующие на лопасть, подвешенную ко втулке винта на шарнирах.

Теперь посмотрим что же будет происходить с лопастью, которая подвешена к оси вращения на шарнирах. Итак, наша лопасть вращается с постоянной скоростью без каких-либо управляющих воздействий извне.

От 0º до 90º скорость обтекания лопасти растет, значит растет и подъемная сила. Но! Теперь лопасть подвешена на горизонтальном шарнире. В результате избыточной подъемной силы она, поворачиваясь в горизонтальном шарнире, начинает подниматься вверх ( специалисты говорят «делает взмах»). Одновременно из-за увеличения лобового сопротивления (ведь скорость обтекания возросла) лопасть отклоняется назад, отставая от вращения оси винта. Для этого как раз и служит вертикальный шарнир.

Однако при взмахе получается, что воздух относительно лопасти приобретает еще и некоторое движение вниз и, таким образом, угол атаки относительно набегающего потока уменьшается. То есть рост избыточной подъемной силы замедляется. На это замедление оказывает свое дополнительно влияние отсутствие управляющего воздействия. Это значит, что тяга автомата перекоса, присоединенная к лопасти, сохраняет свое положение неизменным,  и лопасть, взмахивая, вынуждена поворачиваться в своем осевом шарнире, удерживаемая тягой и, тем самым, уменьшая свой установочный угол или угол атаки по отношению к набегающему потоку. (Картина происходящего на рисунке. Здесь У – это подъемная сила, Х – сила сопротивления, Vy – вертикальное движение воздуха, α – угол атаки.)

Картина изменения скорости и угла атаки набегающего потока при вращении лопасти несущего винта.

До точки 90º избыточная подъемная сила будет продолжать расти, однако из-за вышесказанного со все большим замедлением. После 90º эта сила будет уменьшаться, но из-за ее присутствия лопасть будет продолжать двигаться вверх, правда все медленнее. Максимальную высоту взмаха она достигнет уже несколько перевалив за точку 180º. Это происходит потому, что лопасть имеет определенный вес, и на нее действуют еще и силы инерции.

При дальнейшем вращении лопасть становится отступающей, и на нее действуют все те же процессы, но уже в обратном направлении. Величина подъемной силы падает и центробежная сила вместе с силой веса начинают опускать ее вниз. Однако при этом растут углы атаки для набегающего потока (теперь уже воздух движется вверх по отношению к лопасти), и растет установочный угол лопасти из-за неподвижности тяг автомата перекоса вертолета. Все происходящее поддерживает подъемную силу отступающей лопасти на необходимом уровне. Лопасть продолжает опускаться и минимальной высоты взмаха достигает уже где-то после точки 0º, опять же из-за сил инерции.

Таким образом, лопасти вертолета при вращении несущего винта как бы «машут» или еще говорят «порхают». Однако это порхание вы, так сказать, невооруженным взглядом вряд ли заметите. Подъем лопастей вверх (как и отклонение их назад в вертикальном шарнире) очень незначительны. Дело в том, что на лопасти оказывает очень сильное стабилизирующее воздействие центробежная сила. Подъемная сила, например, больше веса лопасти в 10 раз, а центробежная – в 100 раз. Именно центробежная сила превращает на первый взгляд «мягкую» гнущуюся в неподвижном положении лопасть в жесткий, прочный и отлично работающий элемент несущего винта вертолета.

Однако несмотря на свою незначительность вертикальное отклонение лопастей присутствует, и несущий винт при вращении описывает конус, правда очень пологий. Основание этого конуса и есть плоскость вращения винта.

Силы, действующие на вертолет.

Теперь главная мысль :-). В известной статье я уже говорил, что для придания вертолету поступательного движения нужно эту плоскость наклонить, дабы появилась горизонтальная составляющая полной аэродинамической силы, то есть горизонтальная тяга винта. Иначе говоря, нужно наклонить весь воображаемый конус вращения винта. Если вертолету нужно двигаться вперед, значит конус должен быть наклонен вперед.

Исходя из описания движения лопасти при вращении винта, это означает, что лопасть в положении 180º должна опуститься, а в положении 0º (360º) должна подняться. То есть в точке 180º подъемная сила должна уменьшиться, а в точке 0º(360º) увеличиться. А это в свою очередь можно сделать уменьшив установочный угол лопасти в точке 180º и увеличив его в точке 0º (360º). Аналогичные вещи должны происходить при движении вертолета в других направлениях. Только при этом, естественно, аналогичные изменения положения лопастей будут происходить в других угловых точках.

Понятно, что в промежуточных углах поворота винта между указанными точками установочные углы лопасти должны занимать промежуточные положения, то есть угол установки лопасти меняется при ее движении по кругу  постепенно, циклично.Он так и называется циклический  угол установки лопасти (циклический шаг винта). Я выделяю это название потому, что существует еще и общий шаг винта (общий угол установки лопастей). Он изменяется одновременно на всех лопастях на одинаковую величину. Обычно это делается для увеличения общей подъемной силы несущего винта.

Такие действия как раз и выполняет автомат перекоса вертолета. Он изменяет угол установки лопастей несущего винта (шаг винта), вращая их в осевых шарнирах посредством присоединенных к ним тяг. Обычно всегда присутствуют два канала управления: по тангажу и по крену, а также канал изменения общего шага несущего винта.

Тангаж означает угловое положение летательного аппарата относительно его поперечной оси (нос вверх-вниз :-)), а крен, соответственно, относительно его продольной оси (наклон влево-вправо :-)).

Конструктивно автомат перекоса вертолета выполнен достаточно сложно, но пояснить его устройство вполне можно на примере аналогичного узла модели вертолета. Модельный автомат, конечно, устроен попроще своего старшего собрата, но принцип абсолютно тот же :-).

Автомат перекоса модели вертолета.

Это двухлопастной вертолет. Управление угловым положением каждой лопасти осуществляется через тяги 6. Эти тяги соединены с так называемой внутренней тарелкой 2 (из белого металла). Она вращается вместе с винтом и в установившемся режиме параллельна плоскости вращения винта. Но она может менять свое угловое положение (наклон), так как закреплена на оси винта через шаровую опору 3. При изменении своего наклона (углового положения) она воздействует на тяги 6, которые, в свою очередь, воздействуют на лопасти, поворачивая их в осевых шарнирах и меняя, тем самым, циклический шаг винта.

Внутренняя тарелка одновременно является внутренней обоймой подшипника, внешняя обойма которого – это внешняя тарелка винта 1. Она не вращается, но может менять свой наклон (угловое положение) под воздействием управления по каналу тангажа 4 и по каналу крена 5. Меняя свой наклон под воздействием управления внешняя тарелка меняет наклон внутренней тарелки и в итоге наклон плоскости вращения несущего винта. В итоге вертолет летит в нужном направлении :-).

Общий шаг винта меняется перемещением по оси винта внутренней тарелки 2 при помощи механизма 7. В этом случае угол установки  меняется сразу на обеих лопастях.

Для более лучшего понимания помещаю еще несколько иллюстраций втулки винта с автоматом перекоса. Комментировать их нет смысла :-)…

Втулка винта с автоматом перекоса (схема).

Поворот лопасти в вертикальном шарнире втулки несущего винта.

Изменение общего шага винта, лопасти поворачиваются в осевых шарнирах.

Вот пожалуй и все. Как видите, принципиально все достаточно просто. Конечно в практическом плане автомат перекоса вертолета — агрегат сложный, включающий в себя различные специальные узлы и устройства.

Втулка несущего винта с автоматом перекоса вертолета МИ-2.

В одной из следующих статей мы этого коснемся, а также рассмотрим как же непосредственно управляется вертолет из кабины пилота с использованием автомата перекоса и специальных органов управления.

В заключение я предлагаю вам посмотреть два ролика, которые достаточно наглядно иллюстрируют работу автомата перекоса несущего винта. Полезного просмотра и до новых встреч :-)…

Фотографии кликабельны.

Related posts:

  1. Как летает вертолет.

avia-simply.ru


Смотрите также